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Exact solutions of the magnetohydrodynamic equations 
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Exact one-dimensional solutions of the magnetohydrodynamic equations of 
an incompressible fluid are considered. It is shown that one class of plane wave 
solutions of the linearized equations is also a possible class of solutions of the 
general equations including the effect of displacement current. A similar result 
is also established for the solutions for a horizontally stratified fluid. For the 
particular case when the viscosity is equal to the magnetic diffusivity an exact 
solution is obtained for the magnetohydrodynamic Rayleigh problem for a semi- 
infinite plate. It is shown that this solution may be employed directly to give the 
solution for liquids of small, but not necessarily equal, viscosity and magnetic 
diffusivity . 

1. Introduction 
The solution of the linearized equations of magnetohydrodynamics is a topic 

which has received a considerable amount of attention in recent years. The most 
comprehensive and systematic work on this subject is that of Bafios (1955a, b) ,  
who has considered the detailed form of plane wave solutions of the linearized 
equations. It has also been observed by certain authors (e.g. Lundquist 1952) 
that, for an incompressible fluid, the general non-linear equations also possess 
plane wave solutions similar to those of the linearized equations. It thus seems 
of interest to consider other conditions under which the general and linear 
equations of an incompressible fluid possess similar exact solutions. 

In  the present paper we examine whether there exist similar solutions of the 
linear and exact equations of motion of an incompressible fluid which are func- 
tions of one Cartesian variable z and time. 

In  5 2 we consider the particular class of solutions with no velocity component 
in the z-direction. If the displacement current is neglected the exact equations 
are identical with the linearized ones and thus exact solutions of the linear equa- 
tions are also solutions of the complete equations. In  particular the forms of the 
plane wave solutions of the linear and exact equations are identical. This fact 
has been observed by Lundquist and others. It is also shown that, without neglec- 
ting the displacement current, there exist solutions of the linear equations which 
are also solutions of the exact equations. For plane waves these are the pressure 
modes defined by Bafios (1955b) and are characterized by the fact that the as- 
sociated Poynting vector is in the direction of propagation. 

In  5 3 the particular case when the external magnetic field is in the z direction 
is considered. It is shown that, for a horizontally stratified incompressible fluid, 
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the small amplitude Alfvkn wave type solutions obtained by Ferraro (1954) 
represent possible exact solutions of the equations of motion with the effect of 
displacement current included. It is also shown that the equations of motion for 
one-dimensional disturbances in an unbounded fluid are essentially linear and 
capable of exact solution. 

The type of solutions considered in $ 2 occur in some initial value problems in 
magnetohydrodynamics ; one such problem is the Rayleigh problem for an in- 
finite plate when there is a transverse field present perpendicular to the plate. 
The solution of this problem has been considered in detail by Ludford (1959) and 
Chang & Yen (1959). Another class of boundary-value problem satisfying our 
conditions is the problem of the motion of a viscous fluid bounded by an infinite 
oscillating plane, and the solution for an insulating plane has been given by Kaku- 
tani (1959). The magnetohydrodynamic Rayleigh problem for a half-plane is 
another case when the general equations are exactly reducible to  a linear form. 
This problem is considered in $ 4  where it is shown that, when the viscosity is 
equal to the magnetic diffusivity (conductivity x permeability )-l, the boundary- 
value problem reduces to a classical one. It is also shown that the first-order 
solution for small viscosity and diffusivity may be deduced immediately from 
this special case. 

2. General equations 

stant external magnetic field H, is governed by the equations 
The motion of an incompressible conducting fluid under the action of a con- 

aH 
p- = -curlE, 

at  
1 
- (J -P,v) = E +pv(HO + H), 
CT 

av 
at 

p- = -gradp+p,E+,uJ x (H,+H)+hVzv, 

aE 
J = curlH-e--, 

at 
pe = ~ d i v E ,  

divv = 0, 

-+v.gradp aP = 0. 
at (7) 

In  the above equations E and H denote the induced electric and magnetic fields, 
J denotes the current density, v the fluid velocity and p ,p  and pe the pressure, 
fluid density and charge density, respectively. It will also be assumed that p 
(permeability), E (dielectric constant), (r (conductivity) and h (coefficient of 
viscosity) are constant. We also have from Maxwell's equation that 

divH = 0. (8) 

We now investigate the possibility of obtaining exact solutions of the above 
equations in which the field components are functions of one Cartesian variable z 
and of time. Equations (1) and (8) then show that H ,  is constant; it may thus be 
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absorbed into the x-component of H, and hence there will be no loss of generality 
in taking H ,  = 0. Equations (6) and (7) have, as one solution, 

vz = +/at = ap/aZ = o 
and we consider solutions of equations (1)-(5) satisfying these conditions. Equa- 
tion (7) shows that p will be constant if constant at any particular instant. 

For the first part of the investigation, it will be assumed that the displacement 
current may be neglected (i.e. pe = 0). 

The above assumptions enable (3) to be rewritten 

where k is the unit vector in the z-direction. Equations (11, (2), (4) and (8) now 
give 

Since v, = H, = 0 we have, from (9), that 

H may now be eliminated from (9) and (10) to give 

Equation (12) has been obtained by Ludford (1959) for the particular case when 
v and H, are perpendicular, it has also been derived by Dungey (1958) by linear- 
izing the equations of motion. 

In  view of the fact that our assumptions concerning the form of the solutions 
have reduced the equations to a linear form it seems of interest to examine 
whether there exist solutions of the linearized equations which satisfy our as- 
sumptions and which may therefore represent solutions of the general equations. 
Since z is arbitrary it is seen that plane waves satisfy our assumptions, and the 
propagation of small amplitude plane waves has been considered in detail by 
Bafios (1955a, b ) .  Baiios’s work on magnetohydrodynamic waves is confined to 
the case ofan inviscid fluid; in a later investigation (Bafios 1956) he has considered 
the propagation of magneto-elastic waves. With suitable changes of notation 
the latter work may be used to obtain the results for the propagation of small 
amplitude plane waves in a viscous fluid. 

Bafios has shown that the solution of the linearized equations can be split up 
into two independent classes of solutions which he calls v- and p-modes. The 
v-modes are solutions which are obtained by requiring that the velocity be per- 
pendicular to both k and H,; the pressure associated with such modes is then 
shown to be zero. The p-mode solutions arise when the fluid velocity is in the 
plane of k and H, and perpendicular to k;  in general the pressure associated with 
this mode is non-zero. Another difference between the w- and p-modes is that the 
Poynting vector for the v-modes is in the direction of H, whilst that for the 
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p-modes is parallel to k. If the displacement current is neglected the wave- 
numbers of the v- and p-modes are equal. 

We now examine the extent to which Bafios’s results are applicable to plane 
wave solutions of the general equations. If it  is assumed that v and H are both 
proportional to exp i(wt + kz) ,  then equation (12) gives 

For h = 0 equation (13) reduces to one obtained by Baiios (19553) and for non- 
zero h may be identified with a similar equation derived by Bafios (1956) for 
magneto-elastic waves. Thus, if the displacement current is neglected, the wave- 
numbers of the plane wave solutions of the exact and linearized equations are 
equal. 

The existence of v- and p-mode types of solution of the general equations will 
now be considered. It is easily seen that equation (9) may be re-written 

av a a2v 

at az az2  
p- = - k - ( p + g p H 2 ) + h - + p J x H 0 .  (14) 

Clearly a possible class of solutions of (14) is obtained by setting p = - &H2; 
v will then be perpendicular to H,. Hence, since v, = 0, the velocity is per- 
pendicular to both k and H,. This is precisely the linear v-mode and hence we 
conclude that the exact equations, neglecting displacement currents, possess 
plane wave solutions of the v-mode type. In  the exact solution, however, the 
pressure associated with this mode is - +pH2 and not zero; in the linear theory 
terms of order H2 are neglected and this would give p = 0. Equation (13) shows 
that there will be two possible w-mode solutions, one of which is essentially a 
damped Alfvhn wave and the other a highly attenuated one which vanishes for 
zero viscosity or infinite conductivity. v will be of the form Ak x H, exp i(wt + kz) 
and H and E may be obtained from equations (1) and (10). 

It would be logical at this point to consider the existence of p-mode type solu- 
tions. It will, however, be shown that in this case it is not necessary to neglect 
the displacement current and we therefore consider conditions under which the 
effect of the displacement current may be treated simply. The non-linear effect 
of the displacement current is due to the charge density term and thus, in 
order to seek simple solutions, we shall consider only those with divE = O .  
Since our main interest lies in solutions of the plane wave type it may be assumed 
that E, = 0. If the displacement current is included then (10) becomes 

Equation (15) shows that v and H are parallel for plane waves, and equations 
(2) and (3) thus become 

1 
- J  = E + ~ v x H ,  
0- 

av a2v aE 
a z 2  at 

p at = -grad (p + & & I 2 )  + pJ x H ,  + h - - pe - x H. (17) 
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The only non-vanishing component of the last term on the right-hand side of 
(17) is that in the z-direction and hence this term may be written as - egrad I,+, 
where I,+ is a scalar depending on z and t, and hence 

p- av = -grad(p+~,uH2+e@)+h~z+,uJxH, .  a2v 
at 

Equations (2) and (4) give 
1 
- J.Ho = E.H,, 
0. 

(l+si) J.H, = H,.curlH. 

From (1) and (19) 

(19) 

(20) 

Thus, since div E = 0, J . H, = E . H, = 0 is a possible solution and E will have 
the form +k x H, where + is a scalar. From (16) 

(p i -h&)cur lv  =pcurl(JxH,),  ( 2 2 )  

and eliminating v between (15) and (21) gives 

where v is the kinematic viscosity 
Finally, from (l), (4) and (22), 

If the displacement current is not neglected then (9) has the form 

av a2v a+ aH 
at az2 at 02 aZ p- = h - + C,UHO~ [k x (k x H,)] - + p H  -, (26) 

( 2 7 )  

The velocity and magnetic field components are now determined in terms of q5 

If it  is assumed that + is proportional to exp i(wt + kz) then (24) becomes 

a a+ -[p+&-@O+H)2+c@] = E,U[&?---&]--. 
a Z  at 

from (25) and (26) and the pressure is then given by (27). 
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For v = 0, (28) reduces to the dispersion equation obtained by Bafios for the 
p-modes of an inviscid fluid and with suitable changes of notation is identical 
with the corresponding equation obtained for magneto-elastic waves. For 
plane waves v and H are parallel and thus equation (26) shows that v is parallel 
to k x (k x H,); this is precisely Baiios’s definition of the p-mode solution and the 
other field components are identical with the ones obtained by Bafios for the 
linearized equations. Thus the p-mode solutions of the linearized equations are 
possible solutions of the general magnetohydrodynamic equations. If H, and 
k are parallel, the appropriate form for E is then $a x H, and it may then be 
verified that in this case the p -  and v-modes are indistinguishable. For Ho and k 
parallel it is possible to obtain some additional exact solutions of the equations 
and this point will be considered in more detail in the following section. 

The fact that the present method of generating p-mode solutions for plane 
waves is identical with Bafios’s is a particular example of a general result 
(Williams 1960) that the general solution of the linearized equations can be ex- 
pressed in terms of two independent classes of solutions. One class is generated 
by a stream function and the other by a one component electric vector potential. 
For plane waves the first class becomes the v-mode solution and the other the 
p-mode solution. 

3. Wave fronts perpendicular to external fields 
The problem considered in the first part of the present section is of a more 

general nature than that of the previous sections in that we investigatethe 
deviations from the uniform state E = H = 0 of a horizontally stratified liquid. 
It is also assumed that the permanent magnetic field is vertical. The propagation 
of small amplitude disturbances in an incompressible fluid of this type has been 
examined by Ferraro (1954); the corresponding problem for a compressible fluid 
has been solved by Ferraro & Plumpton (1958). Ferraro has shown that for an 
incompressible fluid there will be propagated small amplitude disturbances 
which are essentially Alfvh waves with a variable velocity. It will now be shown 
that the exact equations also possess solutions of this type. 

The undisturbed pressure and density will be denoted by po and po, respectively, 
and the deviations from these quantities by pl and pl. Equation ( 3 )  now becomes 

dv 
(Po + P1) = -grad (Po + P1) + PF div E +PJ x (H, + H) - (Po + PA gk, 

(29) 

where g is the acceleration due to gravity. The static equilibrium condition is 

dP0 
- = -posy dz 

In  order to simplify the analysis it has been assumed that the fluid is inviscid; 
this assumption is not actually essential and the analysis can in fact be carried 
out for a varying coefficient of viscosity. One solution of equations (6)-(8) is 
v, = H, = p1 = 0, and we consider solutions of the equations which satisfy this 
condition. 
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We now attempt to obtain a particular solution of the equations with v and H 

parallel; this assumption is made because the solution obtained by Ferraro 
satisfies it and also it enables the effect of displacement currents to be included. 
Equations (2) and (4) now show that 

( l + z i ) d i v E  = 0, 

and a possible class of solutions of (31) will be div E = 0 = E,. Prom (l) ,  (2) and 
(4) it  may be shown that 

and (29) and (32) then give 

(33) 
a 1 a 2  

= - [P at -; (@ - €P 91 grad P, 

where P = p + +pH2 + e$ and ~ is defined as in (18). Since vE = 0 and p is a 
function of z and t only we have that the right-hand side of (33) vanishes and hence 

v will have the form $a x k, where $ is a scalar solution of (34) and a an arbi- 
trary constant vector; the other components may then be expressed in terms of 9. 

For E = r 1 =  0 equation (34) reduces to the Alfvkn wave equation with a 
variable velocity (,uH,2/po)i and is the equation obtained by Ferraro by linear- 
izing the equations. Thus we see that for this class of problem, also, there exist 
solutions of the linearized equations which also represent possible solutions of 
the general equations. 

The above analysis has been concerned more with particular forced solutions 
of the general equations than with the solution of particular boundary-value 
problems. It is also of interest, however, to examine the possibility of obtaining 
exact solutions for initial value problems where the wave fronts are perpen- 
dicular to the external magnetic field. The fluid is assumed to occupy an un- 
bounded region of space and the initial density is assumed to be uniform; equation 
(7)  then shows that the density will always be uniform. Equation (3) becomes 

From equations ( 6 )  and (8) it is seen that the gradient term in (35) vanishes in an 
unbounded region and hence that av,/at = 0 and v, is thus constant. From (2), 
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where the displacement current has been neglected in deriving (36). Equation 
(35) now becomes a a  aH 

Eliminating H from (36) and (37) gives 

(37) 

Equation (38) is non-linear but the non-linear effects are due to the constant 
term v, and thus the equation is amenable to exact solution. For v = 0 this 
equation (without the v,) was obtained by Roberts (1955) by linearizing the equa- 
tions of motion and employed by him to solve an initial value problem with 
vz = 0. The above analysis thus shows that Roberts’s solution in fact represents 
an exact solution of the magnetohydrodynamic equations neglecting displace- 
ment current. 

In  the following section the above analysis will be applied to obtain the 
magnetohydrodynamic analogues of some exact solutions of the Navier-Stokes 
equations. 

4. Viscous flow problems 
One of the classical exact solutions of the Navier-Stokes equations is that 

for the Rayleigh problem. This problem is essentially the solution of the equations 
of motion for a viscous incompressible fluid outside an infinite flat plate which is 
suddenly moved parallel to its length with a velocity U .  The corresponding 
problem when the plate is perfectly conducting and there is a uniform magnetic 
field present perpendicular to  the plate has been solved by Ludford (1959) and 
Chang & Yen (1959). The plate is assumed to occupy the plane x = 0 and to be 
moved parallel to itself with velocity U in the x-direction. Clearly this problem 
is of the type considered in 3 3 and v, will satisfy (12). The solution obtained by 
the above authors, by using Laplace transformations, is rather complicated 
but takes on a considerably simpler form for Y = (pg)-l. It is also of interest 
to note that, for a perfectly conducting fluid, the solution may be obtained 
from that of a completely different type of initial value problem solved by 
Roberts (1955). 

It is of mathematical interest to note that equation (38) may be used to solve 
the magnetohydrodynamic Rayleigh problem with constant suction on the plate. 
This problem has been solved in the absence of a magnetic field by Hasimoto 
(1956). 

The Rayleigh problem for a semi-infinite plate may also be reduced to the 
solution of a simple linear equation. We assume that the plate occupies the 
region x = 0, y 3 0, for all x; it is then easily verified that a solution of the equa- 
tions of motion is possible with uy = v, = 0, and vz, a function of y, z and t ,  
satisfying 
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7 = (,ucT)-~, V2 is the two-dimensional Laplacian operator and V the Alfvkn velo- 
city. The only component of H is H, and equations (9) and (10) become 

The electromagnetic boundary conditions are that the tangential components 
of E and H and the normal components of p H  are continuous at  the plate. It 
can be shown that the boundary conditions on the plate reduce to v, = U and 
7 aH,/az = 0. For infinitely conducting fluid the second boundary condition is 
satisfied identically and in this case the only condition is v, = U.  The general 
boundary-value problem is rather complicated ; the Laplace transform method 
is clearly the appropriate one to employ. The problem is then clearly of the 
Wiener-Hopf type, the transform variable p will, however, occur in the Wiener- 
Hopf factorization and the resulting general solution will be extremely com- 
plicated. It will, however, be shown that for v = 7 = k,, the boundary-value 
problem reduces to one of a type already solved. 

In  this case equation (39) becomes 

Thus, from (42), we see that 

where f and g are independent solutions of 

(klV2-at-41c, a = 0. 
a 

(42) 

(43) 

Equations (43) and (44) show that the boundary conditions on the half-plane 
become 

f + g = U  and 

If $ and $ are defined by 

then the boundary conditions on $ and $ on the half plane are 

$ = f + g  and $ = g - f ,  

$ = U and agpz = UV/3kl. 

The boundary-value problems for $ and 11. are of a well-known type and may be 
deduced from the solution of the ordinary Rayleigh problem for a half-plane 
solved by Howarth (1950). The best method of effecting a solution is by means of 
the Laplace transform. If E(y ,  z , p )  denotes the Laplace transform of u(y ,  2, t ) ,  
then 

u = Jr e -p tu  dt. 
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We thus require solutions 7, 3 of 

such that = U / p  and @/az = U V/2klp on the half-plane. For V = 0 Howarth 
has obtained a solution 7H of (45) such that ?a, = U/p on the half plane. This 
solution is defined by 

- u  
- -{2coshqz-e-n”erf q*(y-[)-eqzerf q*(y+t ) ) ,  $ -2p 

where q2 = p / k ,  and y = c2 - y2 and z = 26y. 
A solution to the present boundary-value problem for 7 is thus 

and hence 

# = e-F‘at/4k, #H(y> z, t )  +4k,S,e-’T2w’4k1#H(Y~ v2 z,w)dw* 

By a method similar to that of Howarth’s it is seen that 

(47) 

where klP2 = p + V2/4kl. 

The inverses of 7 and 3 may be expressed in terms of integrals of functions 
obtained by Howarth, which are themselves infinite integrals involving modified 
Hankel functions. The actual forms of $ and @ are extremely complicated and 
will therefore not be considered. It is of some interest to examine the behaviour 
of the solution for large and small values o f t ;  for these cases it is possible to 
obtain reasonable simple forms for the solution. A quantity which is of physical 
interest is the skin friction T at the wall and we shall consider the limiting forms 
of 7,  keeping y fixed, for large and small t .  We have that 

On the wall 

For large t ,  

and thus 

re) 0.4604U(klty2)-* 
wall 

One clearly expects that a$/& will tend to a$,/az as V --f 0 but equation (50) 
shows that the asymptotic form of a$/& is twice that of a#,/az in the limiting 
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case of small V. This apparent discrepancy is due to the fact that for V small 
the integral in (49 )  may not be estimated by normal methods and a method 
developed by Clemmow (1950) must be employed. It can be shown that the 
appropriate form of the first term in (50 )  is 

Equation (51) exhibits the appropriate limiting behaviour for V = 0 and the 
integral is an incomplete' gamma function. For small t it can be shown that 

It is easily shown by transform techniques that 

for large t ,  and 

for small t .  Thus we finally obtain 

For small values oft the skin friction is that obtained by Howarth. The first two 
terms in (52)  represent a residual skin friction; there are two contributions, one 
from the residual magnetic stress and the other from a residual viscous stress. 
A similar state of affairs occurs in Ludford's work, the only difference being the 
absence of a residual viscous stress. The third term in (52 )  is 2 exp ( - V2t/4kl)  
times the corresponding skin friction obtained by Howarth, and for small V this 
term should be replaced by equation (51 ) .  The difficulties encountered in the 
expansion of 7 for large values oft may be clarified by writing 7 as po U(kl/t)iF(R, S )  
where R2 = y2/k, t ,  S = V2t/kl. It is now seen that ( 5 2 )  gives the form of r for 
small R assuming S large, whilst equation (51) gives the modification necessary 
for finite values of 8, still assuming R large. A similar situation occurs in Lud- 
ford's work and since there appears to be a slight discrepancy in his work we shall 
consider this point very briefly. Ludford obtains 

and thus for large t 
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The skin friction is thus 

times the corresponding result obtained by Rayleigh and again a discrepancy 
occurs in the limiting case of small V .  This discrepancy is due to the fact that for 
small V it  is not possible to expand the error function asymptotically. Ludford 
has obtained - 1 instead of (2 + ,/r/i~}. 

Clearly for 7 and v small we can obtain a solution by perturbation methods 
expanding in powers of 7 - v. The process will be fairly complicated but it will be 
shown that a solution neglecting squares of (7 - v) may be obtained immediately 
from the solution for v = 7. If k, is now defined by +(q + v) then (39) shows that 
equation (42) will still hold if terms of order (7 - v)% are neglected. With this new 
definition of k, we define V; by 

X g, V' = e-Vz/2k, f + +'zI2k, 

where f and g satisfy the same boundary conditions as above. We also have from 
(4) that 

V2-+Ho aH a Z  ( k v2-- i t )  V;+QHo(v-7)V2v; = 0. (53) 

Thus, neglecting terms of order (7 - v ) ~  

The conditions on f and g show that, to order (v - 7)2, aH/& = 0 on the wall. Thus 
V;  represents a solution of the problem neglecting terms of order (7 - v)%. 

For q = 0 the solution may be obtained from Howarth's by a suitable variation 
of the parameters. 

Another viscous flow problem capable of exact solutions is that when the plane 
z = 0 oscillates parallel to itself. For an insulating wall a solution has been given 
by Kakutani (1959). The solution for an oscillating half-plane may also be de- 
duced immediately from the Laplace transform of the above solution for impul- 
sive motion. 

The author is indebted to a referee for some detailed comments on an earlier 
form of this paper and for some additional references. 
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